首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6445篇
  免费   351篇
  国内免费   134篇
电工技术   86篇
综合类   104篇
化学工业   1671篇
金属工艺   319篇
机械仪表   155篇
建筑科学   35篇
矿业工程   12篇
能源动力   569篇
轻工业   36篇
水利工程   4篇
石油天然气   13篇
武器工业   2篇
无线电   1628篇
一般工业技术   1032篇
冶金工业   59篇
原子能技术   70篇
自动化技术   1135篇
  2024年   3篇
  2023年   660篇
  2022年   217篇
  2021年   273篇
  2020年   365篇
  2019年   301篇
  2018年   179篇
  2017年   606篇
  2016年   615篇
  2015年   544篇
  2014年   518篇
  2013年   317篇
  2012年   306篇
  2011年   238篇
  2010年   187篇
  2009年   218篇
  2008年   100篇
  2007年   253篇
  2006年   263篇
  2005年   158篇
  2004年   92篇
  2003年   101篇
  2002年   113篇
  2001年   106篇
  2000年   68篇
  1999年   102篇
  1998年   27篇
排序方式: 共有6930条查询结果,搜索用时 203 毫秒
1.
2.
For solid oxide fuel cells, an important structural requirement is that the electrolyte layer needs to be dense and the electrode layer porous, which is difficult to obtain by conventional cosintering. In this work, flash cosintering of a double layer structure consisting of a Gd-doped ceria substrate with a lanthanum strontium cobalt ferrite nanofibre coating is investigated. Experimental and finite element modelling results reveal that when the LSCF layer is connected to the electrode, the heat is concentrated in the LSCF layer, which leads to a huge temperature gradient and introduces severe cracking. When the LSCF layer is electrically isolated from the electrode, the heat is concentrated in the GDC layer, and the temperature gradient is dramatically reduced. In this situation, the density of GDC can reach 92.86% while a high porosity of 52.26% is maintained in the LSCF layer, which is higher than that of the conventional cosintered sample.  相似文献   
3.
The deterministic and probabilistic prediction of ship motion is important for safe navigation and stable real-time operational control of ships at sea. However, the volatility and randomness of ship motion, the non-adaptive nature of single predictors and the poor coverage of quantile regression pose serious challenges to uncertainty prediction, making research in this field limited. In this paper, a multi-predictor integration model based on hybrid data preprocessing, reinforcement learning and improved quantile regression neural network (QRNN) is proposed to explore the deterministic and probabilistic prediction of ship pitch motion. To validate the performance of the proposed multi-predictor integrated prediction model, an experimental study is conducted with three sets of actual ship longitudinal motions during sea trials in the South China Sea. The experimental results indicate that the root mean square errors (RMSEs) of the proposed model of deterministic prediction are 0.0254°, 0.0359°, and 0.0188°, respectively. Taking series #2 as an example, the prediction interval coverage probabilities (PICPs) of the proposed model of probability predictions at 90%, 95%, and 99% confidence levels (CLs) are 0.9400, 0.9800, and 1.0000, respectively. This study signifies that the proposed model can provide trusted deterministic predictions and can effectively quantify the uncertainty of ship pitch motion, which has the potential to provide practical support for ship early warning systems.  相似文献   
4.
In this study, seven different filler materials in different proportions were added to a Ba-Ca-Si glass matrix “H” to investigate new sealant with higher thermal expansion coefficient (CTE) value and good sealing performance for application in oxygen transport membrane (OTM). SrTi0.75Fe0.25O3-δ (STF25) was used as an OTM, and the sealing partners were ferritic steel Aluchrom and pre-oxidized Aluchrom. Compatibility tests were carried out to investigate the feasibility of the composites. Higher CTE values were found in dilatometer tests on composite samples by adding 40 wt% Ag (HAg40) and 30 wt% Ni-Cr (HNC30). Gas-tightness measurements of sandwiched samples produced appropriate helium leakage rates in the range of 10?6 mbar·l·s?1. Sealing behaviour of sealants HAg40 and HNC30 were investigated by joining STF25 and as-delivered/pre-oxidized Aluchrom together. Scanning electron microscopy (SEM) on cross-sections of the joints revealed a homogeneous microstructure and good adherence of the glass sealants to support metals and STF25.  相似文献   
5.
Feng  Yingrui  Hu  Kang  Zhang  Min  Ding  Wei  Kong  Xiangkai  Sheng  Zhigao  Liu  Qiangchun 《Journal of Materials Science》2022,57(1):204-216
Journal of Materials Science - Rationally designing microwave absorption materials with highly efficient and tunable bandwidth is in great demand but remains a huge challenge. In this study,...  相似文献   
6.
In this work, Zn-Ni co-modified LiMg0.9Zn0.1-xNixPO4 (x = 0–0.1) microwave dielectric ceramics were fabricated using a solid state synthesis route. Rietveld refinement of the XRD data revealed that all ceramic samples have formed a single phase with olivine structure. SEM images showed that the samples have a dense microstructure, that agrees with the measured relative density of 97.73 %. Based on the complex chemical bond theory, Raman and infrared reflectance spectra, we postulate that εr is mainly affected by the ionic polarizability, lattice and bond energy, while P-O bond plays a decisive role in Q×f and τf value. Optimum properties of Q×f ~ 153,500 GHz, εr ~ 7.13 and τf ~ ?59 ppm/°C were achieved for the composition LiMg0.9Zn0.06Ni0.04PO4 sintered at 875 ℃ for 2 h. This set of properties makes these ceramics an excellent candidate for LTCC, wave-guide filters and antennas for 5 G/6 G communication applications.  相似文献   
7.
Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research.  相似文献   
8.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
9.
Extensive researches on scintillators have been executed to satisfy the excellent radiation detection materials in broad applications. However, practical application of conventional scintillators is limited due to the limitations of high cost, time-consuming fabrication process and insufficient radioluminescence. Herein, high density precursor glass doped with Tb3+ was designed to absorb X-ray efficiently and produce green emission. Molecular dynamics simulation was used to simulate the phase separation process in melting process. Then, Tb3+-doped Ba0.84Gd0.16F2.16 glass ceramics (GCs) with excellent structural and optical properties were elaborated by melt quenching technic and further heat treating. Their structural properties, photoluminescence (PL) and X-ray excited luminescence (XEL) were explored detailedly. The internal quantum efficiency of PL is 64 % in GCs. The XEL intensity is 192 % of that of Bi4Ge3O12 (BGO) commercial scintillator. Our results suggest that Ba0.84Gd0.16F2.16:Tb3+ GCs might have potential application in X-ray detection.  相似文献   
10.
The nanocrystals play a critical role in generating and affecting functionalities of glass materials. Therefore, scientists have made considerable efforts in clarifying microscopic mechanisms of nanocrystal formation in glass to obtain the desired type of nanocrystals. However, the phase transitions of nanocrystals during heating have not been well understood. Here we report on a discovery of the reversible melting-formation of nanocrystals in an oxyfluoride germanate glass during heating-cooling circles. Using a differential scanning calorimetry (DSC), we detected a striking endothermic event at 925 K during heating, after the glass underwent a DSC upscan to a temperature between 925–986 K and subsequent cooling. Based on Raman spectroscopy, X-ray diffraction and transmission electron microscopy, the endotherm is attributed to the melting of nano-crystal BaGeF6 (˜20 nm). An exothermal response was observed at 890 K during the DSC downscan, implying the re-formation of BaGeF6 nano-crystals. This suggests that the melting-formation of BaGeF6 nano-crystals is a typical first-order transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号